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Detection of subthreshold pulses in neurons with channel noise
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Neurons are subject to various kinds of noise. In addition to synaptic noise, the stochastic opening and
closing of ion channels represents an intrinsic source of noise that affects the signal-processing properties of
the neuron. We study the response of a stochastic Hodgkin-Huxley neuron to transient input subthreshold
pulses. It is found that the average response time decreases but variance increases as the amplitude of channel
noise increases. In the case of single-pulse detection, we show that channel noise enables one neuron to detect
the subthreshold signals and an optimal membrane area (or channel noise intensity) exists for a single neuron
to achieve optimal performance. However, the detection ability of a single neuron is limited by large errors.
Here, we test a simple neuronal network that can enhance the pulse-detecting abilities of neurons and find that
dozens of neurons can perfectly detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance
is also found at both the level of single neurons and the level of networks. At the network level, the detection

ability of networks can be optimized for the number of neurons comprising the network.
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I. INTRODUCTION

It is well known that neurons are subject to various kinds
of noise. Intracellular recordings of cortical neurons in vivo
consistently display highly complex and irregular activity
[1], resulting from an intense and sustained discharge of pr-
esynaptic neurons in the cortical network. Previous studies
have suggested that this tremendous synaptic activity, or syn-
aptic noise, may play a prominent role in neural information
transmission as well as in neural information processing [2].
For example, with stochastic resonance (SR), synaptic noise
facilitates information transfer or allows the transmission of
the subthreshold inputs [3]. Indeed, SR induced by synaptic
noise has been extensively studied in a single-neuron and
neural populations both experimentally and numerically
[4-6].

While the synaptic noise accounts for the majority of
noise in neural systems, another significant noise source is
the stochastic activity of ion channels. Voltage-gated ion
channels in neuronal membranes fluctuate randomly between
different conformational states due to thermal agitation.
Fluctuations between conducting and nonconducting states
give rise to noisy membrane currents and subthreshold volt-
age fluctuations. Recently, much effort has been devoted to
this field and channel noise is now understood to have im-
portant effects on neuronal information processing capabili-
ties. Studies show that channel noise alters action potential
dynamics, enhances signal detection, alters spike-timing re-
liability, and affects the tuning properties of the cell [7-10]
(for a review see [11]).

Detection of small signals is particularly important for
animal survival [13]. Both experimental and numerical stud-
ies have found, as depicted by SR, that synaptic noise can
enhance the detection of subthreshold signals in nonlinear
and threshold-detecting systems. For channel noise, there
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have been many papers concentrating on SR induced by
channel noise [14,15], and their results suggest that neurons
may utilize channel noise to process subthreshold signals.
However, it is still unclear whether reliable detection of sub-
threshold signals could obtained for single neurons if neu-
rons do utilize SR to process signals. On the other hand, as a
intrinsic noise source of neurons, channel noise is mostly
studied within single neurons. Since recent studies suggest
that channel noise enhances synchronization of two coupled
neurons [16], it is natural to ask whether channel noise could
take effects in the network level.

In this study we focus on subthreshold pulse detection in
neurons with channel noise. First, using the stochastic
Hodgkin-Huxley (SHH) neuron model, we study the effects
of channel noise on the response properties of a single neu-
ron to subthreshold pulse input. We find that a SHH neuron
fires spikes at a higher than average level in response to a
subthreshold stimulus. The average response time decreases
while the variance increases as the channel noise amplitude
increases. This result is explained well by the phase-plane
analysis method [17]. Then, we evaluate the subthreshold
signal detection ability of a SHH neuron under the pulse
detection scenario proposed by Wenning et al. [18]. They
reported that colored synaptic noise can enhance the detec-
tion of a subthreshold input. However, since the total error is
always greater than (.5, they argued that the biological rel-
evance of pulse detection for a single neuron is questionable.
In the case of channel noise, we come to a similar conclu-
sion. Therefore, we propose a feasible solution for a neuronal
population to overcome this predicament. We find that sub-
threshold signal detection can be greatly enhanced with the
neuronal networks we propose. The phenomenon of intrinsic
SR induced by channel noise is also observed. We argue that
this SR may be a strategy that neural systems would take to
optimize their detection ability for subthreshold signals.

Our paper is organized as follows. In Sec. II the stochastic
version of the Hodgkin-Huxley neuron model is presented.
In Sec. III, we focus on how the single neuron respond to a
subthreshold transient input pulse. The phase-plane analysis
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method is applied to explain the results presented. In Sec. IV,
we present a simple scenario for pulse detection and demon-
strate that the detection ability of a single neuron is limited.
Then we introduce the network that could reliably detect
subthreshold pulses. Discussions and conclusions are pre-
sented in Sec. V.

II. MODELS
A. Deterministic Hodgkin-Huxley model

The conductance-based Hodgkin-Huxley (HH) neuron
model provides a direct relationship between the microscopic
properties of an ion channel and the macroscopic behaviors
of a nerve membrane [19]. The membrane dynamics of the
HH equations are given by

v
CITL .

dt = — [GK(V— V]r(ev) + GNa(V— Vlr\?:) + GL(V— VL)] + I,

(1)

where V is the membrane potential. Vi, V{7, and V;, are the
reversal potentials of (K) potassium, (Na) sodium, and the
leakage currents, respectively. Gi, Gn,, and G are the cor-
responding specific ion conductances. C,, is the specific
membrane capacitance, and 7 is the current injected into this
membrane patch. The conductance for potassium and sodium
ion channels is given by

GK(V, t) = §Kn4, GNQ(V, t) = gNam3h, (2)

where gx and gy, are the products of two factors: an indi-
vidual channel conductance yg and yy,, respectively, and the
channel densities pg and py,, respectively. gx and gy, give
the maximum conductance when all channels are open. The
gating variables n, m, and h obey the equations

%n =a,(V)(1 =n) - B,(V)n,

= a, ()1 ~m) = BV,

d

2=V =h) = B(V)h, (3)
where a,(V) and B.(V) (x=n,m,h) are voltage-dependent
opening and closing rates and are given in Table I with the
other parameters used in the following simulations.

B. Stochastic Hodgkin-Huxley model

The deterministic HH model describes the average behav-
iors of a larger number of ion channels. However, ion chan-
nels are random devices, and for a limited number of chan-
nels, statistical fluctuations play a role in neuronal dynamics
[20]. To treat the consequent fluctuations in ion conductance,
two kinds of methods are often employed.

One is the so-called Langevin method which characterizes
channel noise with Gaussian white noise [21]. In this de-
scription, the voltage variables still obey Egs. (1) and (2), but
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TABLE 1. Parameters and rate functions used in our
simulations.
C, Specific membrane capacitance 1 uF/cm?
Vg’  Potassium reversal potential =77 mV
Vy  Sodium reversal potential 50 mV
Vi Leakage reversal potential -54.4 mV
YK Potassium channel conductance 20 pS
YNa Sodium channel conductance 20 pS
Gy Leakage conductance 0.3 mS/cm?
PK Potassium channel density 20/ um?
pna  Sodium channel density 60/ um?
o 0.01(V+55) |
" | —e-(v+ssyio ™S
ﬁn 0.1256—(V+65)/80 ms~!
o 0.1(V+40) o
" 1 —-(v+a0yi0 MS
B 4o- (V46318 1)1
m
a 0.07 e~ (V463120 111
1
. -1
B 14+~ (v#3syi0 ™S

the gating variables are random quantities obeying the sto-
chastic differential equations,

%n = ay(V)(1 =) = B,(VIn + &,0).
D = (V)1 =m) = B, (Vi + £,(0)
dtm—Olm —-m _,Bm m+§mt’

= (V1 =)~ BV + 6,0, )

where the variables &,(7), &,(1), and &,(r) denote Gaussian
zero-mean white noise with

2 @,V =n)=B,(Vn

(06N : Si-1),
N\ _ iam(v)(l - m) - ﬁm(V)m o
(.0, (1) = N 5 St—1t"),
E0a) = —2OU=D =BV g, )

Nna 2

where Nx and Ny, are the total number of K* and Na* chan-
nels. Note that in this description, a precondition is that n, m,
and & should be in the interval [0, 1]. It has been argued that
the Langevin method cannot reproduce accurate results (see
[22] for detail). However, it is still an effective method and
widely used for its low computational cost. Additionally, the
trajectory of the phase point prior to a spike entails major
changes in the variables V and m, but the variables n and h
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FIG. 1. Kinetic scheme for a stochastic potassium channel (a)
and sodium channel (b). ny and msh; are open states, while the
other states are nonconducting.

are practically unchanged during the same epoch [23]. So
this recipe enables us to investigate system behaviors in the
V-m phase plane.

Another method is based on the assumption that the open-
ing and closing of each gate of the channel is a Markov
process. With this method, the ion channel stochasticity is
introduced by replacing the stochastic equations by the ex-
plicit voltage-dependent Markovian kinetic models for a
single-ion channel [8,11,12]. As shown in Fig. 1, the K*
channels can exist in five different states and switch between
these states according to the voltage dependence of the tran-
sition rates (identical to the original HH rate functions). ny
labels the single open state of the K* channel. The Na* chan-
nel kinetic model has eight states, with only one open state
msh,. Thus the voltage-dependent conductances for the K*
and Na* channels are given by

GK(Va t) = 71([”4]/‘5" GNa(Va t) = ’YNa[m3h1]/S’ (6)

where Yk and vy, are defined as before and [n4] refers to the
number of open K* channels, [m3h,] the number of open Na*
channels, and S the membrane area of the neuron.

The numbers of open K* and Na* channels at a special
time ¢ is determined by the following formula: if the transi-
tion rate between state A and state B is r and the number of
channels in these states is denoted by n, and np, the prob-
ability that a channel switches within the time interval (z,¢
+Ar) from state A to B is given by p=rAt. Hence, for each
time step, we determine Any,p, the number of channels that
switch from A to B, by choosing a random number from the
binomial distribution

P(Anyp) =( " )pA"AB(l — p)manas), (7)
An AB

Then we update n, with ny—Anyp and ng with ng+An,g. To

ensure that the number of channels in each state is positive,

starting at the beginning with the largest rate, we update

these numbers sequentially and so forth [22].

The noisiness of a cluster of channels can be quantified by
the coefficient of variation CV(I) of the membrane current.
Under assumptions of stationarity (V is fixed), CV(I)
={(1-p)/np}"?, where n is the number of channels and p is
the probability for each channel to be open. Thus the noisi-
ness for a given population of voltage-gated channels is pro-
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portional to n'? [11]. Accordingly, in this study, we intro-
duce the membrane area S as a control parameter of the
channel noise level. Given ion channel density, the level of
channel noise decreases with an increase in membrane area.
The numerical integrations of stochastic equations for
both the occupation number method and the Langevin
method are performed by using forward Euler integration
with a step size 0.01 ms. The parameters used in all simula-
tions are listed in Table I. The occurrences of action poten-
tials are determined by upward crossings of the membrane
potential at a certain detection threshold 10 mV if it has pre-
viously crossed the reset value of =50 mV from below.

III. RESPONSE OF A SHH NEURON TO A
SUBTHRESHOLD TRANSIENT INPUT PULSE

The signal detection of transient subthreshold input pulses
has received increasing attention in recent years [24-26] (see
[18] for more references). In our study of the response of a
SHH neuron, the transient input pulses are set with width
&t=0.1 ms and strength I;=5 uA/cm?,

Figure 2(a) depicts the post-stimulus time histograms
(PSTHs) of a SHH neuron with a membrane area S=20, 200,
and 1000 um?, respectively. Each stimulus was repeated
5000 times. The number of spikes observed in each bin (bin
size=0.1 ms) is normalized by the total number of stimuli
and by the bin size. Thus, the PSTH gives the firing rate or
the distribution of the firing probability as a function of time
[27]. Obviously, there exists a peak over the spontaneous
firing level in each curve and the peak lessens as the mem-
brane area S increases. The higher the peak, the more sensi-
tive neuron responses are to stimuli, which are activated by
channel noise. The base lines show the average level of
spontaneous firing due to channel noise. With a higher base
line, the number of spontaneous spikes increases. Adair has
shown that the firing rate of a neuron with channel noise can
be reduced by lowering the resting potential (Fig. 5 in Ref.
[14]). In our case, the transient input pulse temporally holds
the resting potential to a high state and thus gives a tempo-
rally higher firing rate over the spontaneous one. As the
membrane area increases, since the fluctuations in membrane
currents become smaller, the firings in response to the sub-
threshold signals as well as the noise-induced spontaneous
firings are reduced, yielding reductions in the heights of both
the peaks and the base lines. It is noted that adjacent to the
peak, there follows a time interval of about 10 ms during
which the firing rate is below its average level. We argue that
this trough shape of the PSTH is due to refractoriness of the
neurons [19]. If in a certain time interval the firing rate is
higher than its average level, the firing rate in the following
time range will be reduced because the refractory effect pre-
vents the occurrence of the immediately following firings.
The time interval of 10 ms is in accordance with the effec-
tive refractory period reported by other researchers [28].

To find the range in the membrane area which is more
sensitive to a pulse than the channel noise perturbation, we
define the signal-to-noise ratio (SNR) as the ratio of in-
creased firing probability in response to input pulses to the
probability for spontaneous firing in response to channel
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FIG. 2. (Color online) The response properties of a SHH neuron to subthreshold transient input pulses. (a) The PSTH of a SHH neuron
with different membrane areas vs time. (b) SNR vs membrane area. (c) The mean response time and the variance of the response time vs

membrane area.

noise [27]. As shown in Fig. 2(b), when the membrane area
is smaller than 100 ,umz, the SNR remains very small. With
increasing membrane area, the SNR increases rapidly and
reaches its maximum at about 400 /.Lmz. However, further
increasing the membrane area leads to a decrease in the
SNR. This figure clearly demonstrates the phenomenon of
stochastic resonance. It is noted that as the membrane area
increases, both the peak and the base line of PSTH are re-
duced, so the occurrence of SR for the SNR curve is a result
of a trade-off between the neuron’s sensitivity to subthresh-
old signals and the rejection of spontaneous firings.

Next, we investigate how the channel noise affects the
response time of neurons to subthreshold signals. It has been
recently proposed that the first spikes, which occur in, for
example, cortical neurons, may contain information about a
stimulus [29]. Thus, determinacy in the response time of a
neuron to signals is relevant to the information content, and
how it is affected by channel noise would be an important
question to explore [23]. The PSTH analysis provides us a
first glimpse into it. The central positions of the PSTH peaks
represent the mean response time, and the widths of the
peaks represent the variances in response time. We see that
as the membrane area is increased, the central position of the
PSTH peak moves rightward, and its width is reduced simul-
taneously [see Fig. 2(a)]. This implies that as the membrane
area increases, the mean response time increases but the vari-
ance of the response time decreases. This is consistent with
the results obtained in the case of subthreshold inputs for
external noise [30]. From 5000 times repeated trials, we di-

rectly calculate the mean and variance of the response time
for different membrane areas and plot them in Fig. 2(c). It
seems that the increasing of (T) as well as the decreasing of
Var(T) is in nearly an exponential form.

To investigate the dynamic mechanism of a SHH neuron
responding to transient input pulses, we performed a phase-
plane analysis with the Langevin simulation model described
above. ot and [, for the input pulses are set as 1 ms and
6 wA/cm?, respectively. Figure 3(a) shows the stable fixed
point (SFP), part of the action potential trajectory (APT), and
the unstable circles (UCs) corresponding to different intensi-
ties of the input pulses in a noise-free HH model. The whole
APT for 1,=7.0 is demonstrated in the inset of Fig. 3. Note
that there exists a threshold in this system. The larger the
intensity of input pulses, the farther the system will be dis-
placed from the SFP. If the displacement is larger than the
threshold, an action potential is generated and the system
comes back to the SFP along the APT. Otherwise, the system
evolves along a relatively smaller unstable circle to the SFP
[the color plots in Fig. 3(a)] and merely causes the subthresh-
old membrane potential fluctuations. When channel noise is
involved, the system does not stay on the original SFP, but
fluctuates around the vicinity of SFP, which we call the rest-
ing area (RA) [the black area in Fig. 3(b)]. Occasionally, the
system runs across the threshold due to perturbations in
channel noise; then, the system will evolve along a stochastic
AP trajectory and a spontaneous action potential occurs. In
the case of smaller membrane areas or larger RA, it is easier
for the system to reach the AP trajectory under noise pertur-
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FIG. 3. (Color online) The phase-plane analysis for the response properties of a SHH neuron with Langevin simulations. (a) The action
potential trajectory (APT) and the unstable circle of a noise-free HH neuron in the phase plane. Inset: the overall APT for /,=7.0 and the
position expanded in (a) (marked with a dashed circle). (b) The stable area and the spontaneous APT for membrane area S=100 um?. (c) The
noise-induced APT and the unstable circle (UC) for S=1000 um?. (d) Equitime labeling analysis of the response time to different initial

states.

bation and produce more spontaneous firings (not shown).

To understand how the system responds to the pulse input
with the amount of noise, we traced ten trajectories for
pulses with firing and no firing, respectively. As shown in
Fig. 3(c), in both cases, the system is displaced to an area
around the threshold. Then after the stimulus is removed, the
system jumps onto the APT to generate a spike or onto the
unstable circle and returns back to the RA. This demonstrates
that the jumping is random. The more to the right the state is
before jumping in phase plane, the greater is the possibility
for it to jump onto the APT. The more to the left the state is
before jumping, the more it is possible for the system to
jump onto unstable circles. Since our discussions are limited
to cases of a small amount of noise, noise cannot affect the
length of the pulse displacement, and so the jumping area is
determined by the initial state of the systems before the input
pulse is applied (in our case, the state is described by two
variables V and m; n and h are not considered). The initial
states with larger V and m are more likely to lead to an action
potential [see the averaged initial positions for firing and no
firing plotted in Fig. 3(c)]. Therefore we conclude that the
response of the single SHH neuron to input pulses is state
dependent.

We also investigated the temporal response of the SHH
neuron in the V-m phase plane. In Fig. 3(d), the APTs with
three different response times are traced and labeled with
bars separated equally by 0.5 ms. The leftmost bars denote
the time that the input pulse is applied, and the dashed line
denotes the time that the spikes are detected. It shows that
the system reaches a position closer to the detection thresh-
old if the initial state is higher, and it will come into the outer
side of the APT on which the system moves more quickly
than the systems on the inside of the APT. As a result, this
system presents a shorter response time to the input pulse
and vice versa. We see that the response time for a particular
input pulse is dependent on the initial state of the system. In
addition, one could deduce that it is the variance of initial
state that results in the variance of the response time.

Next, we investigated how the change of membrane area
(i.e., the channel noise level) affects the distribution of initial
state of the system, so that the response time exhibits statis-
tics as shown in (c) of Fig. 2. The distributions of initial state
for different membrane areas are described by the average
and variance of V,,; and m,,;, which are calculated from 2000
firings in response to the pulses with Langevin simulation. It
is seen from Fig. 4 that as the membrane area increases, both
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FIG. 4. The distribution of initial states for different membrane areas. (a) The averages of V;,; and m;,; for different membrane areas. (b)
The variances of V;,; and m;,; for different membrane areas. The eight different dots, from top to bottom in each plot, correspond to
membrane areas $=20, 50, 80, 100, 200, 500, 800, and 1000 ,u,mz, respectively.

the average and variance of V;,; and m;, decrease. In other
words, with the decreasing of channel noise, the distribution
of initial states in the phase plane moves left and down to the
lower value and becomes narrower. As we discussed above, a
lower initial state leads to a longer response time and a nar-
rower distribution of initial states leads to a smaller variance
of the response time. Therefore, the average response time is
prolonged and its variance is reduced if the membrane area is
increased.

It is noted that because of the large computational cost of
our model, it is difficult to obtain the statistical properties of
the response time for a larger membrane area. But through
the phase-plane analysis, we see that the most inner APT
results in the maximal response time, which is the upper
limit of the average response time. As the membrane area
increases to infinitely large, the average response time will
increase gradually to this maximal value. We argue that this
maximal response time corresponds to the response time of
the noise-free HH neuron to the pulse of which the strength
to elicit a spike is minimal. In the deterministic HH model,
for a pulse input with minimal strength of I,
=6.92 uA/cm? and 6t=0.1 ms, the maximal response time
we obtained is 5.87 ms, which matches the PSTH peaks’
right edges [see curves for 200 and 1000 wm? in Fig. 2(a)].
This time scale is important for the choosing of the coinci-
dence time window p introduced in Sec. IV. If p is much
larger than the maximal response time the SHH neuron could
provide, spontaneous firings will be detected together with
the stimulated firings, thus reducing the accuracy of detec-
tion. On the contrary, if p is far less than it, some stimulated
firings will be ignored, so the efficiency of detection is re-
duced.

IV. PERFORMANCE OF PULSE DETECTION

Now, we consider the pulse detection task as a simple
computation that a neural system can perform, in which we
evaluate the performance of a single SHH neuron as well as
a SHH neuron assembly.

The input I, is modeled as a serial narrow rectangular
current pulse with width 6=0.1 ms and strength I,
=5 uA/cm? (see Fig. 5). The input pulse train (the arrow-
heads on the horizontal axis) is regular with a large time

interval AT=100 ms. Compared to the membrane time con-
stant, the preceding pulse has no significant influence on the
following one. In such an arrangement, as has been discussed
above, the SHH neuron has three different responses
(marked with different capital letters respectively in Fig. 5)
to the pulse train which consists of n equidistant pulses.

(i) C: The neuron generates an action potential immedi-
ately (within a time range of 5 ms) after a pulse is presented,
which signifies successful detection of the pulse. We define
P as the fraction of correctly detected pulses, which is the
total number of correctly detected pulses, divided by the total
number of input pulses.

(i) M: The neuron fails to fire a spike immediately
(within a time range of 5 ms) after the pulse is presented. If
we define P, as the fraction of missed pulses, then we have
P M= 1 —P C:

(iii) F: The neuron fires a spike in the absence of an input
pulse (a false positive event). A deterministic HH neuron
cannot fire spikes when the stimulus is not applied or if it is

F' T T T T T T (I:
40 - F (o] o]

20 B

s e L B

A A [ [ A A A A A
0 200 400 600 800

t (ms)

1000

FIG. 5. Trace of the membrane potential of the SHH neuron for
transient input pulses with a width of 0.1 ms and height of
5 wA/cm?. The time of occurrence for pulses is marked by arrow-
heads on the horizontal axis. C: the incidences that the pulse is
correctly detected by the neuron. M: the incidences that the neuron
does not respond to the pulse. F: the incidences that a spike occurs
in the absence of a pulse.
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below the threshold. However, in the case of channel noise,
stochastic effects give rise to spontaneous spiking. To de-
scribe the effect of those spontaneous firing spikes on sub-
threshold pulse detection, we denote Py as the total number
of false positive events divided by the total number of input
pulses. Note that P can easily exceed 1.

In order to quantify the neuron’s response to the pulse
train, we define the total error Q for the pulse detection:

Q=Py+Pp. (8)

For a longer interval AT with fixed n, false positive events
are more likely to occur and the total error grows with in-
creasing AT.

Figure 6(a) shows P., P, and Py as a function of the
membrane area under the above-mentioned scenario. Ac-
cording to the above PSTH analysis, when the membrane
area is rather large, though the system could be displaced by
subthreshold pulses to near the threshold, the channel noise
is small and can hardly trigger firings; thus, P is very small
and Py~ 1. The firings triggered by noise alone are even
less, so the Pp is smaller than P.. When the membrane area
is small, the channel noise is remarkable, giving large P.
Meanwhile, due to the high rate of spontaneous firings, P is
even larger than P.. So, with increasing membrane area,
both P, and P decrease, but P drops more quickly than
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P.. When the membrane area is larger than about 180 um?,
P becomes larger than Pp.

The total error Q as a function of the membrane area is
also plotted in Fig. 6(b). As the membrane area increases,
due to the rapid decline of Pp, the total error Q drops rapidly.
Then, with a further increase in membrane area, Q increases
and approaches 1 for the major contribution from the fraction
of missed pulses. Because Q is basically the summation of
the ascending P, curve and descending P curve, one can
expect a minimal value for it. The minimal value of Q is
0.8746 at S=300 um?. With this optimal membrane area, we
see that the neuron achieves balance between detecting pulse
input and suppressing spontaneous firings.

It should be noted that the positions for P., Py, and Pg
curves are dependent on the strength of the pulse input /; or
the interpulse interval AT. Changing the pulse strength
would change the position of the P, curve, thus the position
of Py, in Fig. 6(a). In particular, smaller pulse strength leads
to a lower position of P, thus a higher position of P, (see
Fig. 7 of Ref. [18] or Fig. 6 of Ref. [14]). As discussed
above, the pulse induced high firing rate would reduce the
spontaneous firing rate through refractoriness within the fol-
lowing 10 ms. If AT is large compared to the refractory pe-
riod of a SHH neuron, this reduction in spontaneous firings is
negligible, so the pulse strength would not affect the position
of the Pr curve. On the contrary, by their definition, Pp,
rather than P, and Py, is greatly dependent on AT. Whatso-
ever, neither pulse strength nor interpulse interval will
change the overall shape of both P~ and P curves. Since the
minimal Q is basically the result of the summation of the
ascending P, curve and descending P curve, we argue that
there is always a minimal value for Q and the optimal mem-
brane area for Q differs for different input pulse strengths or
interpulse intervals.

We see that a single neuron has a limited capacity for
subthreshold signal detection. The channel noise is basically
a zero-mean noise, which means the probability for a sub-
threshold pulse which becomes enhanced by a positive fluc-
tuation is equal to the probability that it is further suppressed
by its negative counterpart. In more detail, the response of
the SHH neuron to input current pulses is state dependent
[Fig. 3(c)]. Channel noise perturbations enable the system,

stlm / \
SHH

\g@

FIG. 7. A schematic diagram of pulse detection with multiple
neurons. /;,, is the input pulse train. S; is the output spike train of
the ith SHH neuron for i=1,2,...,N. CD is the coincidence detec-
tor neuron, and Ry is its output spike train with synchronous firing
detecting threshold 6. Here we demonstrate the case of #=2.
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FIG. 8. (Color online) Detection of subthreshold signals with the neuronal network for the CD threshold 6=1,2,

and (c) Q7 as a function of number of SHH neurons.

with equal chance, to be in a high state that the neuron is
more likely to fire a spike after a pulse is applied or in a low
state that no fires occur. As a result, P could never exceed
0.5 and the total error for a single neuron is always larger
than 0.5. Indeed, we found in Fig. 4 of Ref. [14] that the
spike efficiency for subthreshold voltage impulses never ex-
ceeds 50% and the same conclusion was made in Ref. [18]
for external noise. So we see that, theoretically, it is unlikely
to utilize channel noise to reliably detect subthreshold sig-
nals with a single neuron. However, in reality, the neuron
assembly works in real neural systems rather than in a single
neuron. In general, neurons work cooperatively through syn-
aptic coupling. What is more, among various spatiotemporal
spike patterns in the neural system, synchronous firing has
been most extensively studied both experimentally and theo-
retically [31,32]. Believing that neuronal synchronous firing
is critical for transmitting sensory information, many inves-
tigators have suggested that a major function of cortical neu-
rons is to detect coincident events among their presynaptic
inputs (see [33] for more references). Based on this fact, we
proposed a neuronal network that can greatly enhance the
detection ability of the pulse.

As shown in Fig. 7, the front layer of the network is
composed of globally coupled identical neurons with channel
noise. The coupling term has the form of an additional cur-
rent /., added to the equation for the membrane potential
[see Eq. (1)]. For the ith neuron, it takes the form

...,5. (a) PL, (b) PY,

N
&
Icouple = X,E (Vj -V, )
j=1

where ¢ is the coupling strength and V; is the membrane
potential of the ith neuron for i=1,...,N. In our simulations,
neurons are weakly coupled, £=0.005. And the membrane
area of each SHH neuron is set as S=200 um?’. Here we
chose this value for the membrane area rather than the opti-
mal one so that P of a single neuron is relatively large. Thus
fewer neurons are needed in our network and the computa-
tional cost is consequently reduced. Each SHH neuron in the
network receives the same subthreshold pulse train as in the
single-neuron case. The output spike trains of those neurons
S; (i=1,2,...,N) are taken as the input of a so-called coin-
cidence detector (CD) neuron. In neural reality, coincidence
detection requires complex cellular mechanisms [34,35]. For
simplicity, here we use a phenomenological CD neuron
model. The CD neuron is excited when it detects spikes from
more than 6 neurons within a coincidence time window p
(=5 ms; see discussion Sec. V). In other words, 6 denotes the
detection threshold of the CD neuron. After firing, the CD
neuron enters a refractory period of 5 ms. Obviously, given
the input spike trains S;, the output spike train R, of the CD
neuron is determined by its threshold 6. We also define P
and P? as the fraction of correct detection and false reporting
in the network with the CD threshold 6, respectively. Simi-
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TABLE II. The performance of the network with optimal sizes
for different CD thresholds 6.

) 1 2 3 4 5 6
Nope 5 22 42 6265 6991 78-158
Opin 0725 0.132  0.025 0 0 0
P? 0619 0937 0998 1.0 1.0 1.0

larly, Q? is defined as the total error of the network with the
CD threshold 6.

Figure 8(a) shows Pg as a function of the number of SHH
neurons, N, for 6=1,2,3. As the number of neurons, N, in-
creases, all P increase quickly to Pg—l For larger 6, the
increase of P becomes slower and requires more neurons to
achieve the successful state P%=1. However, the enhance—
ment of Pc is at the cost of unexpected 1mpr0vement in P
As shown in Fig. 8(b), with increasing N, P% is also im-
proved. Note that Pg is able to exceed 1. Comparing Fig.
8(a) with 8(b), it is obvious that, though both Pg and Pﬁ
increase with an increased number of neurons, comparing to
Pg, the increasing of Pﬁ is always delayed. Thus, in the case
of a small N, the correct detection will not be greatly en-
hanced though Pfﬁ is low. Whereas for large N, one can ob-
tain better performance for correct detection, but a cost of a
higher Pg. Therefore, we expect to find an optimal N to
achieve the best performances for signal detection.

Figure 8(c) displays the total error Q7 as a function of the
number of neurons, N, for different 6. Clearly, the minimal
total error Q,,;, or the resonance behavior appears at the net-
work level. For different 6, there exist different optimal num-
bers of SHH neurons N,,, where the performance of pulse
detection is at its best. As shown in Table II, with increasing
0, Q,,n decreases, while the corresponding N,,,,t increases.
Simultaneously, P corresponding to the N,,, increases. If 6
is large enough, the Q,in becomes nearly zero (<0.001) in a
wide range of SHH neuron numbers. Theoretically, by fur-
ther enhancing the detection threshold and involving more
neurons, the zero value of Q,,;, could appear in a wider range
of SHH neuron numbers.

We define the syn-firing probability P? as the probability
that 6 or more than # SHH neurons fire in a time interval.
Supposing the firing probability of each independent SHH
neuron (ignoring the couplings between them) in a time in-
terval is p; then, the syn-firing probability P? in this time
interval is described by the cumulative distribution function
for a binomial distribution—i.e.,

P0= —»¥] - N—oz, 10
zga!w_a)!p( p) (10)

where p%(1-p)V=% is the probability that only « neurons fire
at the same time and C —% is the number of ways of
picking a neurons from population N. So Ea—Om is the
total number of ways of selecting € or more than a 6 neuron
out of a population N. Then the firing probability for a CD
neuron with threshold 6 and refractoriness is written as
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PZD = P’ (influence of past perturbations),  (11)

where the last term represents the suppression of past firings
on present firing probability through refractoriness, which is
proportional to the probability for past firing events [36].
This term can be canceled because it often acts as small
perturbations and does not bring qualitative changes to firing
probabilities of CD neuron statistically. So in the following
analysis, for simplicity, we take PgDz P

From Fig. 9(a) we see that PY and thus PgD, increases
with increasing p, the firing probability of each neuron. So
when pulses are applied to the SHH neuron, the firing prob-
ability of a CD neuron is larger than that caused by channel
noise alone, because the firing probability of each SHH neu-
ron is enhanced. By increasing the number of SHH neurons,
no matter if p is large or small, P? and thus Pg , increases
[Fig. 9(b)], s1nce as in the single-neuron case, P¢. is propor-
tional to PZ;, in response to subthreshold pulses and PY is
proportional to PCD induced by channel noise alone. Pa and
Pa rise, but Pg declines (not shown) as the number of SHH
neurons increases. Therefore, as a result of the summation of
the declining Pj, curve and ascending P§ curve, a minimum
of the total error QY is warranted.

As shown in Fig. 9(c), with the increasing of 6, P? drops,
and for small p, P? drops more quickly. So both Pg and P;{
curves move right and down in Figs. 8(a) and 8(b), and the
PY, curves move right and up (not shown). Thus, the Q.
curves would move rightward in Fig. 8(c). Since, for a single
SHH neuron, its firing probability is low when pulse inputs
are absent, the P}Z curves move more rapidly than the Pf,,
curves. As a result, the QY curves become wider and move
also downward in Fig. 8(c) as 6 increases. So we see that the
drop of Q. is warranted and Q,;,=0 is expected to be
achieved in a wide range of SHH neuron number when 6 is
large enough.

V. DISCUSSION AND CONCLUSION

In this paper, we used the stochastic version of the
Hodgkin-Huxley neuron model in which channel noise is the
only source of noise and discussed the possibility of detect-
ing subthreshold signals with channel noise.

First, we studied the response property of the single SHH
neuron to the subthreshold transient input pulses. The main
result is that the SHH neuron fires spikes with a higher rate
over its average level in response to a subthreshold stimulus.
The average response time decreases but its variance in-
creases as the channel noise amplitude increases (or with
decreasing membrane area). We further found the existence
of an upper limit for the average response time. From phase-
plane analysis we see that this upper limit should be predict-
able for threshold systems with any zero-mean noise, as the
noisiness decreases. This results means that the response
time is very sensitive to the membrane area, because a small
decrease of membrane area would lead to a remarkable de-
crease in the mean response time and an increase in its vari-
ance.

Adair has demonstrated that the stochastic resonance in
ion channels as the output response (in the probability of
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FIG. 9. (Color online) The syn-firing probability P? of the network calculated from Eq. (10). (a) P? as a function of p, the firing
probability of each SHH neuron. §=3, N=100. (b) P? as a function of the number of SHH neurons for different p. 6=3. (c) P? as a function

of @ for different firing probabilities of each SHH neuron p.

action potential spikes, which is equivalent to P in our pa-
per) from small input potential pulses across the cell mem-
brane is increased by added noise, but falls off when the
input noise becomes large. However, to evaluate the reliabil-
ity of subthreshold signal detection, one must consider not
only the response to subthreshold signals, but also the spon-
taneous firings, because from the standpoint of a neuron,
those two kinds of output make no difference. In this paper,
we endowed the SHH neuron with a simple pulse detection
scenario and calculated the total error Q. We found a mini-
mal Q and the corresponding optimal membrane area (noise).
So we argue that to maximize the detection ability, the strat-
egy a neuron should take is balancing between the response
to pulses and rejecting spontaneous firings, rather than im-
proving the response to pulses alone with optimal noise as
Adair demonstrated. As we argued, the first strategy allows
one to achieve the minimal Q for different pulse strengths,
unlike the second one, which is in effect only for large pulse
strength (see Fig. 6 in Ref. [14]). However, even with the
first strategy, we found that the detection ability of a single
neuron is noncredible because Q cannot be larger than 0.5.
Although the results are obtained with channel noise, we
argue that the conclusion should be general for any zero-
mean noise.

The current SHH model is only an approximation to a
much more complex reality. For example, it has presumed
that the channel dynamics are Markov chain process, they act

independently, and the gating currents related to the move-
ment of gating charges are negligible. However, those pre-
sumptions are not always tenable. For example, Schmid et
al. have shown that the gating currents drastically reduce the
spontaneous spiking rate if the membrane area is sufficiently
large [37]. So our results should be reinvestigated with con-
sideration of those factors. But we think those factors would
not bring qualitative changes to our results; thus, the general
conclusions still hold.

We then investigated the subthreshold signal detection in
a neuronal network that concerns a coincidence detection
neuron. We found by enhancing the coincidence detection
threshold and increasing the SHH neurons, the detection
ability is greatly improved. It suggests that channel noise
may play a role in information processing at the neural net-
work level. In addition, corresponding to different coinci-
dence detection thresholds, there exist an optimal number of
neurons at which the total error is at its minimum. We have
seen that this is also the result of balancing between respond-
ing to pulses and rejecting spontaneous firings. Since this
so-called double-system-size resonance phenomenon has
been rarely reported [38], our work provides an example of
such an observation. In particular, with a sufficiently large
coincidence detection threshold, the total error is zero in a
wide range of SHH neuron number, which means the detec-
tion ability of this network could be robust against variance
of neuron number caused by cell production and death.
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We have shown that the reliable detection of subthreshold
signals with the network is predictable with probability
theory, as long as each front layer neuron exhibits higher
firing probability in response to signals than that induced by
noise. Weak signal detection is also important in practice.
For example, mobile communication dictates the use of low-
power detection to prolong long battery life. So our work
suggests a possible way to design reliable stochastic reso-
nance detectors for weak signals [39].
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