Detection of subthreshold pulses in neurons with channel noise

Yong Chen,^{1,2,*} Lianchun Yu,¹ and Shao-Meng Qin¹

¹Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China

²Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China

(Received 1 February 2008; revised manuscript received 3 October 2008; published 11 November 2008)

Neurons are subject to various kinds of noise. In addition to synaptic noise, the stochastic opening and closing of ion channels represents an intrinsic source of noise that affects the signal-processing properties of the neuron. We study the response of a stochastic Hodgkin-Huxley neuron to transient input subthreshold pulses. It is found that the average response time decreases but variance increases as the amplitude of channel noise increases. In the case of single-pulse detection, we show that channel noise enables one neuron to detect the subthreshold signals and an optimal membrane area (or channel noise intensity) exists for a single neuron to achieve optimal performance. However, the detection ability of a single neuron is limited by large errors. Here, we test a simple neuronal network that can enhance the pulse-detecting abilities of neurons and find that dozens of neurons can perfectly detect subthreshold pulses. The phenomenon of intrinsic stochastic resonance is also found at both the level of single neurons and the level of networks. At the network level, the detection ability of networks can be optimized for the number of neurons comprising the network.

DOI: 10.1103/PhysRevE.78.051909

PACS number(s): 87.19.lc, 87.19.ln, 87.16.Vy, 87.19.lb

I. INTRODUCTION

It is well known that neurons are subject to various kinds of noise. Intracellular recordings of cortical neurons *in vivo* consistently display highly complex and irregular activity [1], resulting from an intense and sustained discharge of presynaptic neurons in the cortical network. Previous studies have suggested that this tremendous synaptic activity, or synaptic noise, may play a prominent role in neural information transmission as well as in neural information processing [2]. For example, with stochastic resonance (SR), synaptic noise facilitates information transfer or allows the transmission of the subthreshold inputs [3]. Indeed, SR induced by synaptic noise has been extensively studied in a single-neuron and neural populations both experimentally and numerically [4–6].

While the synaptic noise accounts for the majority of noise in neural systems, another significant noise source is the stochastic activity of ion channels. Voltage-gated ion channels in neuronal membranes fluctuate randomly between different conformational states due to thermal agitation. Fluctuations between conducting and nonconducting states give rise to noisy membrane currents and subthreshold voltage fluctuations. Recently, much effort has been devoted to this field and channel noise is now understood to have important effects on neuronal information processing capabilities. Studies show that channel noise alters action potential dynamics, enhances signal detection, alters spike-timing reliability, and affects the tuning properties of the cell [7-10] (for a review see [11]).

Detection of small signals is particularly important for animal survival [13]. Both experimental and numerical studies have found, as depicted by SR, that synaptic noise can enhance the detection of subthreshold signals in nonlinear and threshold-detecting systems. For channel noise, there have been many papers concentrating on SR induced by channel noise [14,15], and their results suggest that neurons may utilize channel noise to process subthreshold signals. However, it is still unclear whether reliable detection of subthreshold signals could obtained for single neurons if neurons do utilize SR to process signals. On the other hand, as a intrinsic noise source of neurons, channel noise is mostly studied within single neurons. Since recent studies suggest that channel noise enhances synchronization of two coupled neurons [16], it is natural to ask whether channel noise could take effects in the network level.

In this study we focus on subthreshold pulse detection in neurons with channel noise. First, using the stochastic Hodgkin-Huxley (SHH) neuron model, we study the effects of channel noise on the response properties of a single neuron to subthreshold pulse input. We find that a SHH neuron fires spikes at a higher than average level in response to a subthreshold stimulus. The average response time decreases while the variance increases as the channel noise amplitude increases. This result is explained well by the phase-plane analysis method [17]. Then, we evaluate the subthreshold signal detection ability of a SHH neuron under the pulse detection scenario proposed by Wenning *et al.* [18]. They reported that colored synaptic noise can enhance the detection of a subthreshold input. However, since the total error is always greater than 0.5, they argued that the biological relevance of pulse detection for a single neuron is questionable. In the case of channel noise, we come to a similar conclusion. Therefore, we propose a feasible solution for a neuronal population to overcome this predicament. We find that subthreshold signal detection can be greatly enhanced with the neuronal networks we propose. The phenomenon of intrinsic SR induced by channel noise is also observed. We argue that this SR may be a strategy that neural systems would take to optimize their detection ability for subthreshold signals.

Our paper is organized as follows. In Sec. II the stochastic version of the Hodgkin-Huxley neuron model is presented. In Sec. III, we focus on how the single neuron respond to a subthreshold transient input pulse. The phase-plane analysis

^{*}Corresponding author: ychen.ch@gmail.com

method is applied to explain the results presented. In Sec. IV, we present a simple scenario for pulse detection and demonstrate that the detection ability of a single neuron is limited. Then we introduce the network that could reliably detect subthreshold pulses. Discussions and conclusions are presented in Sec. V.

II. MODELS

A. Deterministic Hodgkin-Huxley model

The conductance-based Hodgkin-Huxley (HH) neuron model provides a direct relationship between the microscopic properties of an ion channel and the macroscopic behaviors of a nerve membrane [19]. The membrane dynamics of the HH equations are given by

$$C_m \frac{dV}{dt} = -\left[G_{\rm K}(V - V_{\rm K}^{rev}) + G_{\rm Na}(V - V_{\rm Na}^{rev}) + G_L(V - V_L)\right] + I,$$
(1)

where V is the membrane potential. $V_{\rm K}^{rev}$, $V_{\rm Na}^{rev}$, and V_L , are the reversal potentials of (K) potassium, (Na) sodium, and the leakage currents, respectively. $G_{\rm K}$, $G_{\rm Na}$, and G_L are the corresponding specific ion conductances. C_m is the specific membrane capacitance, and I is the current injected into this membrane patch. The conductance for potassium and sodium ion channels is given by

$$G_{\rm K}(V,t) = \overline{g}_{\rm K} n^4, \quad G_{\rm Na}(V,t) = \overline{g}_{\rm Na} m^3 h, \tag{2}$$

where $\bar{g}_{\rm K}$ and $\bar{g}_{\rm Na}$ are the products of two factors: an individual channel conductance $\gamma_{\rm K}$ and $\gamma_{\rm Na}$, respectively, and the channel densities $\rho_{\rm K}$ and $\rho_{\rm Na}$, respectively. $\bar{g}_{\rm K}$ and $\bar{g}_{\rm Na}$ give the maximum conductance when all channels are open. The gating variables *n*, *m*, and *h* obey the equations

$$\frac{d}{dt}n = \alpha_n(V)(1-n) - \beta_n(V)n,$$
$$\frac{d}{dt}m = \alpha_m(V)(1-m) - \beta_m(V)m,$$
$$\frac{d}{dt}h = \alpha_h(V)(1-h) - \beta_h(V)h,$$
(3)

where $\alpha_x(V)$ and $\beta_x(V)$ (x=n,m,h) are voltage-dependent opening and closing rates and are given in Table I with the other parameters used in the following simulations.

B. Stochastic Hodgkin-Huxley model

The deterministic HH model describes the average behaviors of a larger number of ion channels. However, ion channels are random devices, and for a limited number of channels, statistical fluctuations play a role in neuronal dynamics [20]. To treat the consequent fluctuations in ion conductance, two kinds of methods are often employed.

One is the so-called Langevin method which characterizes channel noise with Gaussian white noise [21]. In this description, the voltage variables still obey Eqs. (1) and (2), but

TABLE I. Parameters and rate functions used in our simulations.

C_m	Specific membrane capacitance	$1 \ \mu F/cm^2$
V_{K}^{rev}	Potassium reversal potential	-77 mV
$V_{ m Na}^{rev}$	Sodium reversal potential	50 mV
V_L	Leakage reversal potential	-54.4 mV
$\gamma_{\rm K}$	Potassium channel conductance	20 pS
$\gamma_{ m Na}$	Sodium channel conductance	20 pS
G_L	Leakage conductance	0.3 mS/cm^2
$ ho_{ m K}$	Potassium channel density	$20/\mu m^2$
$ ho_{ m Na}$	Sodium channel density	$60/\mu m^2$
α_n		$\frac{0.01(V+55)}{1-e^{-(V+55)/10}} \text{ ms}^{-1}$
β_n		$0.125e^{-(V+65)/80} \text{ ms}^{-1}$
α_m		$\frac{0.1(V+40)}{1-e^{-(V+40)/10}} \text{ ms}^{-1}$
β_m		$4e^{-(V+65)/18}$ ms ⁻¹
$lpha_h$		$0.07e^{-(V+65)/20} \text{ ms}^{-1}$
eta_h		$\frac{1}{1 + e^{-(V+35)/10}} \mathrm{ms}^{-1}$

the gating variables are random quantities obeying the stochastic differential equations,

$$\frac{d}{dt}n = \alpha_n(V)(1-n) - \beta_n(V)n + \xi_n(t),$$

$$\frac{d}{dt}m = \alpha_m(V)(1-m) - \beta_m(V)m + \xi_m(t),$$

$$\frac{d}{dt}h = \alpha_h(V)(1-h) - \beta_h(V)h + \xi_h(t),$$
(4)

where the variables $\xi_n(t)$, $\xi_m(t)$, and $\xi_h(t)$ denote Gaussian zero-mean white noise with

$$\langle \xi_n(t)\xi_n(t')\rangle = \frac{2}{N_{\rm K}} \frac{\alpha_n(V)(1-n) - \beta_n(V)n}{2} \delta(t-t'),$$

$$\langle \xi_m(t)\xi_m(t')\rangle = \frac{2}{N_{\rm Na}} \frac{\alpha_m(V)(1-m) - \beta_m(V)m}{2} \delta(t-t'),$$

$$\langle \xi_h(t)\xi_h(t')\rangle = \frac{2}{N_{\rm Na}} \frac{\alpha_h(V)(1-h) - \beta_h(V)h}{2} \delta(t-t'),$$

$$(5)$$

where $N_{\rm K}$ and $N_{\rm Na}$ are the total number of K⁺ and Na⁺ channels. Note that in this description, a precondition is that *n*, *m*, and *h* should be in the interval [0, 1]. It has been argued that the Langevin method cannot reproduce accurate results (see [22] for detail). However, it is still an effective method and widely used for its low computational cost. Additionally, the trajectory of the phase point prior to a spike entails major changes in the variables *V* and *m*, but the variables *n* and *h*

(a)
$$[n_0] \xrightarrow{4\alpha_n} [n_1] \xrightarrow{3\alpha_n} [n_2] \xrightarrow{2\alpha_n} [n_3] \xrightarrow{\alpha_n} [n_4]$$

$$[m_{0}h_{1}] \xrightarrow{3\alpha_{m}} [m_{1}h_{1}] \xrightarrow{2\alpha_{m}} [m_{2}h_{1}] \xrightarrow{\alpha_{m}} [m_{3}h_{1}]$$

$$(b) \quad \alpha_{h} \left| \left| \beta_{h} \qquad \alpha_{h} \right| \right| \beta_{h} \qquad \alpha_{h} \left| \left| \beta_{h} \qquad \alpha_{h} \right| \right| \beta_{h} \qquad \alpha_{h} \left| \left| \beta_{h} \qquad \alpha_{h} \right| \right| \beta_{h} \qquad \alpha_{h} \right| \right| \beta_{h}$$

$$[m_{0}h_{0}] \xrightarrow{3\alpha_{m}} [m_{1}h_{0}] \xrightarrow{2\alpha_{m}} [m_{2}h_{0}] \xrightarrow{\alpha_{m}} [m_{3}h_{0}]$$

FIG. 1. Kinetic scheme for a stochastic potassium channel (a) and sodium channel (b). n_4 and m_3h_1 are open states, while the other states are nonconducting.

are practically unchanged during the same epoch [23]. So this recipe enables us to investigate system behaviors in the V-m phase plane.

Another method is based on the assumption that the opening and closing of each gate of the channel is a Markov process. With this method, the ion channel stochasticity is introduced by replacing the stochastic equations by the explicit voltage-dependent Markovian kinetic models for a single-ion channel [8,11,12]. As shown in Fig. 1, the K⁺ channels can exist in five different states and switch between these states according to the voltage dependence of the transition rates (identical to the original HH rate functions). n_4 labels the single open state of the K⁺ channel. The Na⁺ channel kinetic model has eight states, with only one open state m_3h_1 . Thus the voltage-dependent conductances for the K⁺ and Na⁺ channels are given by

$$G_{\rm K}(V,t) = \gamma_{\rm K}[n_4]/S, \quad G_{\rm Na}(V,t) = \gamma_{\rm Na}[m_3h_1]/S, \quad (6)$$

where $\gamma_{\rm K}$ and $\gamma_{\rm Na}$ are defined as before and $[n_4]$ refers to the number of open K⁺ channels, $[m_3h_1]$ the number of open Na⁺ channels, and *S* the membrane area of the neuron.

The numbers of open K⁺ and Na⁺ channels at a special time *t* is determined by the following formula: if the transition rate between state *A* and state *B* is *r* and the number of channels in these states is denoted by n_A and n_B , the probability that a channel switches within the time interval $(t, t + \Delta t)$ from state *A* to *B* is given by $p=r\Delta t$. Hence, for each time step, we determine Δn_{AB} , the number of channels that switch from *A* to *B*, by choosing a random number from the binomial distribution

$$P(\Delta n_{AB}) = \binom{n_A}{\Delta n_{AB}} p^{\Delta n_{AB}} (1-p)^{(n_A - \Delta n_{AB})}.$$
 (7)

Then we update n_A with $n_A - \Delta n_{AB}$ and n_B with $n_B + \Delta n_{AB}$. To ensure that the number of channels in each state is positive, starting at the beginning with the largest rate, we update these numbers sequentially and so forth [22].

The noisiness of a cluster of channels can be quantified by the coefficient of variation CV(I) of the membrane current. Under assumptions of stationarity (*V* is fixed), $CV(I) = \{(1-p)/np\}^{1/2}$, where *n* is the number of channels and *p* is the probability for each channel to be open. Thus the noisiness for a given population of voltage-gated channels is proportional to $n^{1/2}$ [11]. Accordingly, in this study, we introduce the membrane area *S* as a control parameter of the channel noise level. Given ion channel density, the level of channel noise decreases with an increase in membrane area.

The numerical integrations of stochastic equations for both the occupation number method and the Langevin method are performed by using forward Euler integration with a step size 0.01 ms. The parameters used in all simulations are listed in Table I. The occurrences of action potentials are determined by upward crossings of the membrane potential at a certain detection threshold 10 mV if it has previously crossed the reset value of -50 mV from below.

III. RESPONSE OF A SHH NEURON TO A SUBTHRESHOLD TRANSIENT INPUT PULSE

The signal detection of transient subthreshold input pulses has received increasing attention in recent years [24–26] (see [18] for more references). In our study of the response of a SHH neuron, the transient input pulses are set with width δt =0.1 ms and strength I_0 =5 μ A/cm².

Figure 2(a) depicts the post-stimulus time histograms (PSTHs) of a SHH neuron with a membrane area S=20, 200,and 1000 μ m², respectively. Each stimulus was repeated 5000 times. The number of spikes observed in each bin (bin size=0.1 ms) is normalized by the total number of stimuli and by the bin size. Thus, the PSTH gives the firing rate or the distribution of the firing probability as a function of time [27]. Obviously, there exists a peak over the spontaneous firing level in each curve and the peak lessens as the membrane area S increases. The higher the peak, the more sensitive neuron responses are to stimuli, which are activated by channel noise. The base lines show the average level of spontaneous firing due to channel noise. With a higher base line, the number of spontaneous spikes increases. Adair has shown that the firing rate of a neuron with channel noise can be reduced by lowering the resting potential (Fig. 5 in Ref. [14]). In our case, the transient input pulse temporally holds the resting potential to a high state and thus gives a temporally higher firing rate over the spontaneous one. As the membrane area increases, since the fluctuations in membrane currents become smaller, the firings in response to the subthreshold signals as well as the noise-induced spontaneous firings are reduced, yielding reductions in the heights of both the peaks and the base lines. It is noted that adjacent to the peak, there follows a time interval of about 10 ms during which the firing rate is below its average level. We argue that this trough shape of the PSTH is due to refractoriness of the neurons [19]. If in a certain time interval the firing rate is higher than its average level, the firing rate in the following time range will be reduced because the refractory effect prevents the occurrence of the immediately following firings. The time interval of 10 ms is in accordance with the effective refractory period reported by other researchers [28].

To find the range in the membrane area which is more sensitive to a pulse than the channel noise perturbation, we define the signal-to-noise ratio (SNR) as the ratio of increased firing probability in response to input pulses to the probability for spontaneous firing in response to channel

FIG. 2. (Color online) The response properties of a SHH neuron to subthreshold transient input pulses. (a) The PSTH of a SHH neuron with different membrane areas vs time. (b) SNR vs membrane area. (c) The mean response time and the variance of the response time vs membrane area.

noise [27]. As shown in Fig. 2(b), when the membrane area is smaller than 100 μ m², the SNR remains very small. With increasing membrane area, the SNR increases rapidly and reaches its maximum at about 400 μ m². However, further increasing the membrane area leads to a decrease in the SNR. This figure clearly demonstrates the phenomenon of stochastic resonance. It is noted that as the membrane area increases, both the peak and the base line of PSTH are reduced, so the occurrence of SR for the SNR curve is a result of a trade-off between the neuron's sensitivity to subthreshold signals and the rejection of spontaneous firings.

Next, we investigate how the channel noise affects the response time of neurons to subthreshold signals. It has been recently proposed that the first spikes, which occur in, for example, cortical neurons, may contain information about a stimulus [29]. Thus, determinacy in the response time of a neuron to signals is relevant to the information content, and how it is affected by channel noise would be an important question to explore [23]. The PSTH analysis provides us a first glimpse into it. The central positions of the PSTH peaks represent the mean response time, and the widths of the peaks represent the variances in response time. We see that as the membrane area is increased, the central position of the PSTH peak moves rightward, and its width is reduced simultaneously [see Fig. 2(a)]. This implies that as the membrane area increases, the mean response time increases but the variance of the response time decreases. This is consistent with the results obtained in the case of subthreshold inputs for external noise [30]. From 5000 times repeated trials, we directly calculate the mean and variance of the response time for different membrane areas and plot them in Fig. 2(c). It seems that the increasing of $\langle T \rangle$ as well as the decreasing of Var(*T*) is in nearly an exponential form.

To investigate the dynamic mechanism of a SHH neuron responding to transient input pulses, we performed a phaseplane analysis with the Langevin simulation model described above. δt and I_0 for the input pulses are set as 1 ms and $6 \ \mu A/cm^2$, respectively. Figure 3(a) shows the stable fixed point (SFP), part of the action potential trajectory (APT), and the unstable circles (UCs) corresponding to different intensities of the input pulses in a noise-free HH model. The whole APT for $I_0=7.0$ is demonstrated in the inset of Fig. 3. Note that there exists a threshold in this system. The larger the intensity of input pulses, the farther the system will be displaced from the SFP. If the displacement is larger than the threshold, an action potential is generated and the system comes back to the SFP along the APT. Otherwise, the system evolves along a relatively smaller unstable circle to the SFP [the color plots in Fig. 3(a)] and merely causes the subthreshold membrane potential fluctuations. When channel noise is involved, the system does not stay on the original SFP, but fluctuates around the vicinity of SFP, which we call the resting area (RA) [the black area in Fig. 3(b)]. Occasionally, the system runs across the threshold due to perturbations in channel noise; then, the system will evolve along a stochastic AP trajectory and a spontaneous action potential occurs. In the case of smaller membrane areas or larger RA, it is easier for the system to reach the AP trajectory under noise pertur-

FIG. 3. (Color online) The phase-plane analysis for the response properties of a SHH neuron with Langevin simulations. (a) The action potential trajectory (APT) and the unstable circle of a noise-free HH neuron in the phase plane. Inset: the overall APT for I_0 =7.0 and the position expanded in (a) (marked with a dashed circle). (b) The stable area and the spontaneous APT for membrane area S=100 μ m². (c) The noise-induced APT and the unstable circle (UC) for S=1000 μ m². (d) Equitime labeling analysis of the response time to different initial states.

bation and produce more spontaneous firings (not shown).

To understand how the system responds to the pulse input with the amount of noise, we traced ten trajectories for pulses with firing and no firing, respectively. As shown in Fig. 3(c), in both cases, the system is displaced to an area around the threshold. Then after the stimulus is removed, the system jumps onto the APT to generate a spike or onto the unstable circle and returns back to the RA. This demonstrates that the jumping is random. The more to the right the state is before jumping in phase plane, the greater is the possibility for it to jump onto the APT. The more to the left the state is before jumping, the more it is possible for the system to jump onto unstable circles. Since our discussions are limited to cases of a small amount of noise, noise cannot affect the length of the pulse displacement, and so the jumping area is determined by the initial state of the systems before the input pulse is applied (in our case, the state is described by two variables V and m; n and h are not considered). The initial states with larger V and m are more likely to lead to an action potential [see the averaged initial positions for firing and no firing plotted in Fig. 3(c)]. Therefore we conclude that the response of the single SHH neuron to input pulses is state dependent.

We also investigated the temporal response of the SHH neuron in the *V*-*m* phase plane. In Fig. 3(d), the APTs with three different response times are traced and labeled with bars separated equally by 0.5 ms. The leftmost bars denote the time that the input pulse is applied, and the dashed line denotes the time that the spikes are detected. It shows that the system reaches a position closer to the detection threshold if the initial state is higher, and it will come into the outer side of the APT on which the system moves more quickly than the systems on the inside of the APT. As a result, this system presents a shorter response time to the input pulse and vice versa. We see that the response time for a particular input pulse is dependent on the initial state of the system. In addition, one could deduce that it is the variance of initial state that results in the variance of the response time.

Next, we investigated how the change of membrane area (i.e., the channel noise level) affects the distribution of initial state of the system, so that the response time exhibits statistics as shown in (c) of Fig. 2. The distributions of initial state for different membrane areas are described by the average and variance of V_{ini} and m_{ini} , which are calculated from 2000 firings in response to the pulses with Langevin simulation. It is seen from Fig. 4 that as the membrane area increases, both

FIG. 4. The distribution of initial states for different membrane areas. (a) The averages of V_{ini} and m_{ini} for different membrane areas. (b) The variances of V_{ini} and m_{ini} for different membrane areas. The eight different dots, from top to bottom in each plot, correspond to membrane areas S=20, 50, 80, 100, 200, 500, 800, and 1000 μ m², respectively.

the average and variance of V_{ini} and m_{ini} decrease. In other words, with the decreasing of channel noise, the distribution of initial states in the phase plane moves left and down to the lower value and becomes narrower. As we discussed above, a lower initial state leads to a longer response time and a narrower distribution of initial states leads to a smaller variance of the response time. Therefore, the average response time is prolonged and its variance is reduced if the membrane area is increased.

It is noted that because of the large computational cost of our model, it is difficult to obtain the statistical properties of the response time for a larger membrane area. But through the phase-plane analysis, we see that the most inner APT results in the maximal response time, which is the upper limit of the average response time. As the membrane area increases to infinitely large, the average response time will increase gradually to this maximal value. We argue that this maximal response time corresponds to the response time of the noise-free HH neuron to the pulse of which the strength to elicit a spike is minimal. In the deterministic HH model, for a pulse input with minimal strength of I_0 =6.92 μ A/cm² and δt =0.1 ms, the maximal response time we obtained is 5.87 ms, which matches the PSTH peaks' right edges [see curves for 200 and 1000 μ m² in Fig. 2(a)]. This time scale is important for the choosing of the coincidence time window ρ introduced in Sec. IV. If ρ is much larger than the maximal response time the SHH neuron could provide, spontaneous firings will be detected together with the stimulated firings, thus reducing the accuracy of detection. On the contrary, if ρ is far less than it, some stimulated firings will be ignored, so the efficiency of detection is reduced.

IV. PERFORMANCE OF PULSE DETECTION

Now, we consider the pulse detection task as a simple computation that a neural system can perform, in which we evaluate the performance of a single SHH neuron as well as a SHH neuron assembly.

The input I_{stim} is modeled as a serial narrow rectangular current pulse with width $\delta t = 0.1$ ms and strength I_0 =5 μ A/cm² (see Fig. 5). The input pulse train (the arrowheads on the horizontal axis) is regular with a large time interval ΔT =100 ms. Compared to the membrane time constant, the preceding pulse has no significant influence on the following one. In such an arrangement, as has been discussed above, the SHH neuron has three different responses (marked with different capital letters respectively in Fig. 5) to the pulse train which consists of *n* equidistant pulses.

(i) C: The neuron generates an action potential immediately (within a time range of 5 ms) after a pulse is presented, which signifies successful detection of the pulse. We define P_C as the fraction of correctly detected pulses, which is the total number of correctly detected pulses, divided by the total number of input pulses.

(ii) *M*: The neuron fails to fire a spike immediately (within a time range of 5 ms) after the pulse is presented. If we define P_M as the fraction of missed pulses, then we have $P_M = 1 - P_C$.

(iii) F: The neuron fires a spike in the absence of an input pulse (a false positive event). A deterministic HH neuron cannot fire spikes when the stimulus is not applied or if it is

FIG. 5. Trace of the membrane potential of the SHH neuron for transient input pulses with a width of 0.1 ms and height of 5 μ A/cm². The time of occurrence for pulses is marked by arrowheads on the horizontal axis. *C*: the incidences that the pulse is correctly detected by the neuron. *M*: the incidences that the neuron does not respond to the pulse. *F*: the incidences that a spike occurs in the absence of a pulse.

FIG. 6. (Color online) The performance of a single neuron in a subthreshold pulse detection task. (a) P_C , P_M , P_F , and (b) total error Q as a function of membrane area.

below the threshold. However, in the case of channel noise, stochastic effects give rise to spontaneous spiking. To describe the effect of those spontaneous firing spikes on sub-threshold pulse detection, we denote P_F as the total number of false positive events divided by the total number of input pulses. Note that P_F can easily exceed 1.

In order to quantify the neuron's response to the pulse train, we define the total error Q for the pulse detection:

$$Q = P_M + P_F. \tag{8}$$

For a longer interval ΔT with fixed *n*, false positive events are more likely to occur and the total error grows with increasing ΔT .

Figure 6(a) shows P_C , P_M , and P_F as a function of the membrane area under the above-mentioned scenario. According to the above PSTH analysis, when the membrane area is rather large, though the system could be displaced by subthreshold pulses to near the threshold, the channel noise is small and can hardly trigger firings; thus, P_C is very small and $P_M \approx 1$. The firings triggered by noise alone are even less, so the P_F is smaller than P_C . When the membrane area is small, the channel noise is remarkable, giving large P_C . Meanwhile, due to the high rate of spontaneous firings, P_F is even larger than P_C . So, with increasing membrane area, both P_C and P_F decrease, but P_F drops more quickly than

 P_C . When the membrane area is larger than about 180 μ m², P_C becomes larger than P_F .

The total error Q as a function of the membrane area is also plotted in Fig. 6(b). As the membrane area increases, due to the rapid decline of P_F , the total error Q drops rapidly. Then, with a further increase in membrane area, Q increases and approaches 1 for the major contribution from the fraction of missed pulses. Because Q is basically the summation of the ascending P_M curve and descending P_F curve, one can expect a minimal value for it. The minimal value of Q is 0.8746 at $S=300 \ \mu\text{m}^2$. With this optimal membrane area, we see that the neuron achieves balance between detecting pulse input and suppressing spontaneous firings.

It should be noted that the positions for P_C , P_M , and P_F curves are dependent on the strength of the pulse input I_0 or the interpulse interval ΔT . Changing the pulse strength would change the position of the P_C curve, thus the position of P_M in Fig. 6(a). In particular, smaller pulse strength leads to a lower position of P_C , thus a higher position of P_M (see Fig. 7 of Ref. [18] or Fig. 6 of Ref. [14]). As discussed above, the pulse induced high firing rate would reduce the spontaneous firing rate through refractoriness within the following 10 ms. If ΔT is large compared to the refractory period of a SHH neuron, this reduction in spontaneous firings is negligible, so the pulse strength would not affect the position of the P_F curve. On the contrary, by their definition, P_F , rather than P_C and P_M , is greatly dependent on ΔT . Whatsoever, neither pulse strength nor interpulse interval will change the overall shape of both P_C and P_F curves. Since the minimal Q is basically the result of the summation of the ascending P_M curve and descending P_F curve, we argue that there is always a minimal value for Q and the optimal membrane area for Q differs for different input pulse strengths or interpulse intervals.

We see that a single neuron has a limited capacity for subthreshold signal detection. The channel noise is basically a zero-mean noise, which means the probability for a subthreshold pulse which becomes enhanced by a positive fluctuation is equal to the probability that it is further suppressed by its negative counterpart. In more detail, the response of the SHH neuron to input current pulses is state dependent [Fig. 3(c)]. Channel noise perturbations enable the system,

FIG. 7. A schematic diagram of pulse detection with multiple neurons. I_{stim} is the input pulse train. S_i is the output spike train of the *i*th SHH neuron for i=1,2,...,N. CD is the coincidence detector neuron, and \mathbf{R}_{θ} is its output spike train with synchronous firing detecting threshold θ . Here we demonstrate the case of $\theta=2$.

FIG. 8. (Color online) Detection of subthreshold signals with the neuronal network for the CD threshold $\theta = 1, 2, ..., 5$. (a) P_C^{θ} , (b) P_F^{θ} , and (c) Q^{θ} as a function of number of SHH neurons.

with equal chance, to be in a high state that the neuron is more likely to fire a spike after a pulse is applied or in a low state that no fires occur. As a result, P_C could never exceed 0.5 and the total error for a single neuron is always larger than 0.5. Indeed, we found in Fig. 4 of Ref. [14] that the spike efficiency for subthreshold voltage impulses never exceeds 50% and the same conclusion was made in Ref. [18] for external noise. So we see that, theoretically, it is unlikely to utilize channel noise to reliably detect subthreshold signals with a single neuron. However, in reality, the neuron assembly works in real neural systems rather than in a single neuron. In general, neurons work cooperatively through synaptic coupling. What is more, among various spatiotemporal spike patterns in the neural system, synchronous firing has been most extensively studied both experimentally and theoretically [31,32]. Believing that neuronal synchronous firing is critical for transmitting sensory information, many investigators have suggested that a major function of cortical neurons is to detect coincident events among their presynaptic inputs (see [33] for more references). Based on this fact, we proposed a neuronal network that can greatly enhance the detection ability of the pulse.

As shown in Fig. 7, the front layer of the network is composed of globally coupled identical neurons with channel noise. The coupling term has the form of an additional current I_{couple} added to the equation for the membrane potential [see Eq. (1)]. For the *i*th neuron, it takes the form

$$I_{couple} = \frac{\varepsilon}{N} \sum_{j=1}^{N} (V_j - V_j), \qquad (9)$$

where ε is the coupling strength and V_i is the membrane potential of the *i*th neuron for i = 1, ..., N. In our simulations, neurons are weakly coupled, $\varepsilon = 0.005$. And the membrane area of each SHH neuron is set as $S=200 \ \mu m^2$. Here we chose this value for the membrane area rather than the optimal one so that P_C of a single neuron is relatively large. Thus fewer neurons are needed in our network and the computational cost is consequently reduced. Each SHH neuron in the network receives the same subthreshold pulse train as in the single-neuron case. The output spike trains of those neurons S_i $(i=1,2,\ldots,N)$ are taken as the input of a so-called coincidence detector (CD) neuron. In neural reality, coincidence detection requires complex cellular mechanisms [34,35]. For simplicity, here we use a phenomenological CD neuron model. The CD neuron is excited when it detects spikes from more than θ neurons within a coincidence time window ρ (=5 ms; see discussion Sec. V). In other words, θ denotes the detection threshold of the CD neuron. After firing, the CD neuron enters a refractory period of 5 ms. Obviously, given the input spike trains S_i , the output spike train R_{θ} of the CD neuron is determined by its threshold θ . We also define P_C^{θ} and P_F^{θ} as the fraction of correct detection and false reporting in the network with the CD threshold θ , respectively. Simi-

TABLE II. The performance of the network with optimal sizes for different CD thresholds θ .

θ	1	2	3	4	5	6
Nopt	5	22	42	62–65	69–91	78-158
Q_{min}	0.725	0.132	0.025	0	0	0
P_C^{θ}	0.619	0.937	0.998	1.0	1.0	1.0

larly, Q^{θ} is defined as the total error of the network with the CD threshold θ .

Figure 8(a) shows P_C^{θ} as a function of the number of SHH neurons, N, for $\theta = 1, 2, 3$. As the number of neurons, N, increases, all P_C^{θ} increase quickly to $P_C^{\theta} = 1$. For larger θ , the increase of P_C^{θ} becomes slower and requires more neurons to achieve the successful state $P_C^{\theta} = 1$. However, the enhancement of P_C^{θ} is at the cost of unexpected improvement in P_F^{θ} . As shown in Fig. 8(b), with increasing N, P_F^{θ} is also improved. Note that P_F^{θ} is able to exceed 1. Comparing Fig. 8(a) with 8(b), it is obvious that, though both P_C^{θ} and P_F^{θ} increase with an increased number of neurons, comparing to P_C^{θ} , the increasing of P_F^{θ} is always delayed. Thus, in the case of a small N, the correct detection will not be greatly enhanced though P_F^{θ} is low. Whereas for large N, one can obtain better performance for correct detection, but a cost of a higher P_F^{θ} . Therefore, we expect to find an optimal N to achieve the best performances for signal detection.

Figure 8(c) displays the total error Q^{θ} as a function of the number of neurons, N, for different θ . Clearly, the minimal total error Q_{min} or the resonance behavior appears at the network level. For different θ , there exist different optimal numbers of SHH neurons N_{opt} where the performance of pulse detection is at its best. As shown in Table II, with increasing θ , Q_{min} decreases, while the corresponding N_{opt} increases. Simultaneously, P_C^{θ} corresponding to the N_{opt} increases. If θ is large enough, the Q_{min} becomes nearly zero (<0.001) in a wide range of SHH neuron numbers. Theoretically, by further enhancing the detection threshold and involving more neurons, the zero value of Q_{min} could appear in a wider range of SHH neuron numbers.

We define the syn-firing probability P^{θ} as the probability that θ or more than θ SHH neurons fire in a time interval. Supposing the firing probability of each independent SHH neuron (ignoring the couplings between them) in a time interval is p; then, the syn-firing probability P^{θ} in this time interval is described by the cumulative distribution function for a binomial distribution—i.e.,

$$P^{\theta} = \sum_{\alpha=\theta}^{N} \frac{N!}{\alpha! (N-\alpha)!} p^{\alpha} (1-p)^{N-\alpha}, \qquad (10)$$

where $p^{\alpha}(1-p)^{N-\alpha}$ is the probability that only α neurons fire at the same time and $C_{\alpha}^{N} = \frac{N!}{\alpha!(N-\alpha)!}$ is the number of ways of picking α neurons from population N. So $\sum_{\alpha=\theta}^{N} \frac{N!}{\alpha!(N-\alpha)!}$ is the total number of ways of selecting θ or more than a θ neuron out of a population N. Then the firing probability for a CD neuron with threshold θ and refractoriness is written as

$$P_{CD}^{\theta} = P^{\theta} - (\text{influence of past perturbations}), \quad (11)$$

where the last term represents the suppression of past firings on present firing probability through refractoriness, which is proportional to the probability for past firing events [36]. This term can be canceled because it often acts as small perturbations and does not bring qualitative changes to firing probabilities of CD neuron statistically. So in the following analysis, for simplicity, we take $P_{CD}^{\theta} \approx P^{\theta}$. From Fig. 9(a) we see that P^{θ} , and thus P_{CD}^{θ} , increases

From Fig. 9(a) we see that P^{θ} , and thus P^{θ}_{CD} , increases with increasing p, the firing probability of each neuron. So when pulses are applied to the SHH neuron, the firing probability of a CD neuron is larger than that caused by channel noise alone, because the firing probability of each SHH neuron is enhanced. By increasing the number of SHH neurons, no matter if p is large or small, P^{θ} , and thus P^{θ}_{CD} , increases [Fig. 9(b)], since, as in the single-neuron case, P^{θ}_{C} is proportional to P^{θ}_{CD} in response to subthreshold pulses and P^{θ}_{F} is proportional to P^{θ}_{CD} induced by channel noise alone. P^{θ}_{C} and P^{θ}_{F} rise, but P^{θ}_{M} declines (not shown) as the number of SHH neurons increases. Therefore, as a result of the summation of the declining P^{θ}_{M} curve and ascending P^{θ}_{F} curve, a minimum of the total error Q^{θ} is warranted.

As shown in Fig. 9(c), with the increasing of θ , P^{θ} drops, and for small p, P^{θ} drops more quickly. So both P_{C}^{θ} and P_{F}^{θ} curves move right and down in Figs. 8(a) and 8(b), and the P_{M}^{θ} curves move right and up (not shown). Thus, the Q_{\min} curves would move rightward in Fig. 8(c). Since, for a single SHH neuron, its firing probability is low when pulse inputs are absent, the P_{F}^{θ} curves move more rapidly than the P_{M}^{θ} curves. As a result, the Q^{θ} curves become wider and move also downward in Fig. 8(c) as θ increases. So we see that the drop of Q_{\min} is warranted and $Q_{\min}=0$ is expected to be achieved in a wide range of SHH neuron number when θ is large enough.

V. DISCUSSION AND CONCLUSION

In this paper, we used the stochastic version of the Hodgkin-Huxley neuron model in which channel noise is the only source of noise and discussed the possibility of detecting subthreshold signals with channel noise.

First, we studied the response property of the single SHH neuron to the subthreshold transient input pulses. The main result is that the SHH neuron fires spikes with a higher rate over its average level in response to a subthreshold stimulus. The average response time decreases but its variance increases as the channel noise amplitude increases (or with decreasing membrane area). We further found the existence of an upper limit for the average response time. From phaseplane analysis we see that this upper limit should be predictable for threshold systems with any zero-mean noise, as the noisiness decreases. This results means that the response time is very sensitive to the membrane area, because a small decrease of membrane area would lead to a remarkable decrease in the mean response time and an increase in its variance.

Adair has demonstrated that the stochastic resonance in ion channels as the output response (in the probability of

FIG. 9. (Color online) The syn-firing probability P^{θ} of the network calculated from Eq. (10). (a) P^{θ} as a function of p, the firing probability of each SHH neuron. $\theta=3$, N=100. (b) P^{θ} as a function of the number of SHH neurons for different p. $\theta=3$. (c) P^{θ} as a function of θ for different firing probabilities of each SHH neuron p.

action potential spikes, which is equivalent to P_C in our paper) from small input potential pulses across the cell membrane is increased by added noise, but falls off when the input noise becomes large. However, to evaluate the reliability of subthreshold signal detection, one must consider not only the response to subthreshold signals, but also the spontaneous firings, because from the standpoint of a neuron, those two kinds of output make no difference. In this paper, we endowed the SHH neuron with a simple pulse detection scenario and calculated the total error Q. We found a minimal Q and the corresponding optimal membrane area (noise). So we argue that to maximize the detection ability, the strategy a neuron should take is balancing between the response to pulses and rejecting spontaneous firings, rather than improving the response to pulses alone with optimal noise as Adair demonstrated. As we argued, the first strategy allows one to achieve the minimal Q for different pulse strengths, unlike the second one, which is in effect only for large pulse strength (see Fig. 6 in Ref. [14]). However, even with the first strategy, we found that the detection ability of a single neuron is noncredible because Q cannot be larger than 0.5. Although the results are obtained with channel noise, we argue that the conclusion should be general for any zeromean noise.

The current SHH model is only an approximation to a much more complex reality. For example, it has presumed that the channel dynamics are Markov chain process, they act independently, and the gating currents related to the movement of gating charges are negligible. However, those presumptions are not always tenable. For example, Schmid *et al*. have shown that the gating currents drastically reduce the spontaneous spiking rate if the membrane area is sufficiently large [37]. So our results should be reinvestigated with consideration of those factors. But we think those factors would not bring qualitative changes to our results; thus, the general conclusions still hold.

We then investigated the subthreshold signal detection in a neuronal network that concerns a coincidence detection neuron. We found by enhancing the coincidence detection threshold and increasing the SHH neurons, the detection ability is greatly improved. It suggests that channel noise may play a role in information processing at the neural network level. In addition, corresponding to different coincidence detection thresholds, there exist an optimal number of neurons at which the total error is at its minimum. We have seen that this is also the result of balancing between responding to pulses and rejecting spontaneous firings. Since this so-called double-system-size resonance phenomenon has been rarely reported [38], our work provides an example of such an observation. In particular, with a sufficiently large coincidence detection threshold, the total error is zero in a wide range of SHH neuron number, which means the detection ability of this network could be robust against variance of neuron number caused by cell production and death.

DETECTION OF SUBTHRESHOLD PULSES IN NEURONS...

We have shown that the reliable detection of subthreshold signals with the network is predictable with probability theory, as long as each front layer neuron exhibits higher firing probability in response to signals than that induced by noise. Weak signal detection is also important in practice. For example, mobile communication dictates the use of lowpower detection to prolong long battery life. So our work suggests a possible way to design reliable stochastic resonance detectors for weak signals [39].

- D. Paré, E. Shink, H. Gaudreau, A. Destexhe, and E. J. Lang, J. Neurophysiol. **79**, 1450 (1998).
- [2] M. Volgushev and U. T. Eysel, Science 290, 1908 (2000).
- [3] L. Gammaitoni, P. Hänggi, and P. Jung, Rev. Mod. Phys. 70, 223 (1998).
- [4] W. C. Stacey and D. M. Durand, in *Proceedings of First Joint BMES/EMBS Conference: Serving Humanity Advancing Technology*, edited by S. M. Blanchard *et al.* (IEEE, Piscataway, NJ, 1999), Vol. 1, p. 364.
- [5] W. C. Stacey and D. M. Durand, J. Neurophysiol. 83, 1394 (2000).
- [6] W. C. Stacey and D. M. Durand, J. Neurophysiol. 86, 1104 (2001).
- [7] J. A. White, R. Klink, A. Alonso, and A. R. Kay, J. Neurophysiol. 80, 262 (1998).
- [8] E. Schneidman, B. Freedman, and I. Segev, Neural Comput. 10, 1679 (1998).
- [9] E. Schneidman, I. Segev, and N. Tishby, in Advances in Neural Information Processing, edited by T. K. Leen and K. R. Müller (MIT Press, Cambridge, MA, 2000), pp. 178–184.
- [10] S. Schreiber, J. M. Fellous, P. Tiesinga, and T. J. Sejnowski, J. Neurophysiol. 91, 194 (2004).
- [11] J. A. White, J. T. Rubinstein, and A. R. Kay, Trends Neurosci.23, 131 (2000).
- [12] P. Jung and J. W. Shuai, Europhys. Lett. 56, 29 (2001).
- [13] G. Svirskis, V. Kotak, D. H. Sanes, and J. Rinzel, J. Neurophysiol. 91, 2465 (2004).
- [14] R. K. Adair, Proc. Natl. Acad. Sci. U.S.A. 100, 12099 (2003).
- [15] G. Schmid, I. Goychuk, and P. Hänggi, Europhys. Lett. 56, 22 (2001).
- [16] L. C. Yu, Y. Chen, and P. Zhang, Eur. Phys. J. B 59, 249 (2007).
- [17] J. Rinzel and G. B. Ermentrout, in *Methods in Neuronal Modeling: From Synapses to Networks*, edited by C. Koch and I. Segev (MIT Press, Cambridge, MA, 1989), pp. 135–169.

ACKNOWLEDGMENTS

We really appreciate two anonymous referees for their very constructive and helpful suggestions. This work was supported by the National Natural Science Foundation of China under Grant No. 10305005 and by the Fundamental Research Fund for Physics and Mathematic of Lanzhou University.

- [18] G. Wenning, T. Hoch, and K. Obermayer, Phys. Rev. E 71, 021902 (2005).
- [19] A. L. Hodgkin and A. F. Huxley, J. Physiol. (London) 117, 500 (1952).
- [20] P. Dayan and L. F. Abbott, *Theoretical Neuroscience: Computational and mathematical modeling of neural systems* (MIT Press, Cambridge, MA, 2001).
- [21] R. F. Fox, Biophys. J. 72, 2068 (1997).
- [22] S. Y. Zeng and P. Jung, Phys. Rev. E 70, 011903 (2004).
- [23] H. C. Tuckwell and F. Y. M. Wan, Physica A 351, 427 (2005).
- [24] B. S. Gutkin, G. B. Ermentrout, and D. A. Reyes, J. Neurophysiol. 94, 1623 (2005).
- [25] H. Hasegawa, Phys. Rev. E 66, 021902 (2002).
- [26] S. L. Ginzburg and M. A. Pustovoit, Physica A 369, 354 (2006).
- [27] G. Svirskis, V. Kotak, D. H. Sanes, and J. Rinzel, J. Neurosci. 22, 11019 (2002).
- [28] D. Brown, J. Feng, and S. Feerick, Phys. Rev. Lett. 82, 4731 (1999).
- [29] R. VanRullen, R. Guyonneau, and S. J. Thorpe, Trends Neurosci. 28, 1 (2005).
- [30] H. C. Tuckwell, BioSystems 80, 25 (2005).
- [31] H. Kitajima and J. Kurths, Chaos 15, 023704 (2005).
- [32] L. M. Ward, Trends Cogn. Sci. 7, 553 (2003).
- [33] S. A. Roy and K. D. Alloway, J. Neurosci. 21, 2462 (2001).
- [34] D. H. Edwards, S. R. Yeh, and F. B. Krasne, Proc. Natl. Acad. Sci. U.S.A. 95, 7145 (1998).
- [35] G. J. Stuart and M. Häusser, Nat. Neurosci. 4, 63 (2001).
- [36] A. Herrmann and W. Gerstner, J. Comput. Neurosci. 11, 135 (2001).
- [37] G. Schmid, I. Goychuk, and P. Hänggi, Phys. Biol. **3**, 248 (2006).
- [38] M. S. Wang, Z. H. Hou, and H. W. Xin, ChemPhysChem 5, 1602 (2004).
- [39] A. A. Saha and G. V. Anand, Signal Process. 83, 1193 (2003).